|
Information theory is a branch of applied mathematics, electrical engineering, and computer science involving the quantification of information. Information theory was developed by Claude E. Shannon to find fundamental limits on signal processing operations such as compressing data and on reliably storing and communicating data. Since its inception it has broadened to find applications in many other areas, including statistical inference, natural language processing, cryptography, neurobiology, the evolution〔cf. Huelsenbeck, J. P., F. Ronquist, R. Nielsen and J. P. Bollback (2001) Bayesian inference of phylogeny and its impact on evolutionary biology, ''Science'' 294:2310-2314〕 and function〔Rando Allikmets, Wyeth W. Wasserman, Amy Hutchinson, Philip Smallwood, Jeremy Nathans, Peter K. Rogan, (Thomas D. Schneider ), Michael Dean (1998) Organization of the ABCR gene: analysis of promoter and splice junction sequences, ''Gene'' 215:1, 111-122〕 of molecular codes, model selection in ecology,〔Burnham, K. P. and Anderson D. R. (2002) ''Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second Edition'' (Springer Science, New York) ISBN 978-0-387-95364-9.〕 thermal physics,〔Jaynes, E. T. (1957) (Information Theory and Statistical Mechanics ), ''Phys. Rev.'' 106:620〕 quantum computing, linguistics, plagiarism detection,〔Charles H. Bennett, Ming Li, and Bin Ma (2003) (Chain Letters and Evolutionary Histories ), ''Scientific American'' 288:6, 76-81〕 pattern recognition, anomaly detection and other forms of data analysis.〔 〕 A key measure of information is entropy, which is usually expressed by the average number of bits needed to store or communicate one symbol in a message. Entropy quantifies the uncertainty involved in predicting the value of a random variable. For example, specifying the outcome of a fair coin flip (two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a (six equally likely outcomes). Applications of fundamental topics of information theory include lossless data compression (e.g. ZIP files), lossy data compression (e.g. MP3s and JPEGs), and channel coding (e.g. for Digital Subscriber Line (DSL)). The field is at the intersection of mathematics, statistics, computer science, physics, neurobiology, and electrical engineering. Its impact has been crucial to the success of the Voyager missions to deep space, the invention of the compact disc, the feasibility of mobile phones, the development of the Internet, the study of linguistics and of human perception, the understanding of black holes, and numerous other fields. Important sub-fields of information theory are source coding, channel coding, algorithmic complexity theory, algorithmic information theory, information-theoretic security, and measures of information. ==Overview== Information theory studies the transmission, processing, utilization, and extraction of information. Abstractly, information can be thought of as the resolution of uncertainty. In the case of communication of information over a noisy channel, this abstract concept was made concrete in 1948 by Claude Shannon in A Mathematical Theory of Communication, in which "information" is thought of as a set of possible messages, where the goal is to send these messages over a noisy channel, and then to have the receiver reconstruct the message with low probability of error, in spite of the channel noise. Shannon's main result, the Noisy-channel coding theorem showed that, in the limit of many channel uses, the rate of information that is asymptotically achievable is equal to the Channel capacity, a quantity dependent merely on the statistics of the channel over which the messages are sent.〔 Information theory is closely associated with a collection of pure and applied disciplines that have been investigated and reduced to engineering practice under a variety of rubrics throughout the world over the past half century or more: adaptive systems, anticipatory systems, artificial intelligence, complex systems, complexity science, cybernetics, informatics, machine learning, along with systems sciences of many descriptions. Information theory is a broad and deep mathematical theory, with equally broad and deep applications, amongst which is the vital field of coding theory. Coding theory is concerned with finding explicit methods, called ''codes'', for increasing the efficiency and reducing the error rate of data communication over noisy channels to near the Channel capacity. These codes can be roughly subdivided into data compression (source coding) and error-correction (channel coding) techniques. In the latter case, it took many years to find the methods Shannon's work proved were possible. A third class of information theory codes are cryptographic algorithms (both codes and ciphers). Concepts, methods and results from coding theory and information theory are widely used in cryptography and cryptanalysis. ''See the article ban (unit) for a historical application.'' Information theory is also used in information retrieval, intelligence gathering, gambling, statistics, and even in musical composition. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「information theory」の詳細全文を読む スポンサード リンク
|